

**NURSING CARE FOR CHILDREN WITH PNEUMONIA WITH
INEFFECTIVE AIRWAY CLEARANCE THROUGH THE
APPLICATION OF THE PAPER PROPELLER BLOWING
TECHNIQUE PAPER PROPELLERS AS BREATH STIMULATION IN
THE ANGGREK ROOM AT ARIFIN AHMAD HOSPITAL, RIAU
PROVINCE**

Yetty Sri Septini Manalu^{1*}, Dini Maulinda¹, Gita Adelia¹, Desi Anggraini¹

¹Payung Negeri Health Institute Pekanbaru, Faculty of Nursing, Professional Nurse Program, Pekanbaru, Indonesia

***Corresponding author:** spety@gmail.com

Abstract

Pneumonia is a major cause of morbidity and mortality in children, particularly toddlers, and is often complicated by ineffective airway clearance due to increased secretion production and impaired gas exchange. This condition can be exacerbated by comorbidities such as rheumatic heart disease, pleural effusion, malnutrition, and pulmonary infiltrates. This case study aims to describe comprehensive nursing care for a child with pneumonia accompanied by cardiovascular disorders and poor nutritional status, with interventions focused on improving airway clearance. The study subject was a preschool-aged child with tachypnea up to 52 breaths/minute, bilateral moist rales, ineffective cough, use of accessory muscles, decreased oxygen saturation, and pleural effusion. The patient also had a history of severe rheumatic heart disease (RHD), hypotension, generalized edema, and poor nutritional status (BMI 10.9).

The nursing intervention was carried out for three days, including airway management (semi-Fowler's position, nebulization, chest physiotherapy, and effective coughing techniques), oxygen therapy, family education, pharmacological collaboration, and breathing exercises using the propeller blowing technique as a modification of pursed lips breathing. This technique was applied 15 times per session for three minutes each time signs of respiratory distress appeared. The evaluation results showed a decrease in respiratory rate from 42x/minute to 30x/minute, a decrease in rhonchi, increased cough effectiveness, and an improved breathing pattern. In addition, there was an improvement in cardiac output and a gradual improvement in nutritional status. This study proves that the blowing technique as a play-based approach is effective in children with pneumonia with complex clinical conditions as part of a comprehensive nursing intervention.

Keyword: Childhood pneumonia; Propeller blow technique; Ineffective airway clearance

INTRODUCTION

Pneumonia is one of the leading causes of morbidity and mortality among hospitalized children, especially toddlers, with a high incidence both globally and nationally [1]. Clinically, children with pneumonia often experience excessive secretion production, pulmonary hyperinflation, and impaired gas exchange, which lead to airway obstruction [2]. This pathophysiological process contributes to the nursing problem of ineffective airway clearance due to the accumulation of secretions that are not optimally eliminated [3].

Typical clinical manifestations include ineffective coughing, tachypnea (respiratory rate >40 breaths/minute), use of accessory muscles, moist crackles, and decreased oxygen saturation ($<94\%$) [4]. If not managed effectively, these symptoms can progress to hypoxia,

respiratory muscle fatigue, atelectasis, and eventually respiratory failure [5]. The condition becomes even more complex when ineffective airway clearance occurs in children with severe comorbidities such as rheumatic heart disease and severe protein-energy malnutrition, which significantly reduce pulmonary capacity, cardiovascular performance, and immune response.

Because of this complexity, comprehensive nursing care is required. One evidence-based, non-pharmacological, and child-friendly intervention is the use of play-based breathing techniques. The propeller blowing method, along with similar activities such as balloon or bubble blowing, has been reported to significantly improve oxygen saturation and decrease clinical symptom scores in children recovering from pneumonia [6], [7]. Playful breathing exercises have also been shown to reduce respiratory rate and improve SpO₂ in children with asthma or pneumonia [8].

The purpose of this case study is to describe comprehensive nursing care for a child with severe pneumonia accompanied by rheumatic heart disease and malnutrition, focusing on the implementation of the propeller blowing technique as a specific intervention to address ineffective airway clearance.

RESEARCH METHODS

A. Design and Setting

This clinical case study employed a descriptive-observational approach. The study was conducted in the Anggrek Ward, Arifin Achmad Regional General Hospital, over a three-day intensive care period beginning on October 9, 2025.

B. Case Subject

The subject was an 11-year-old female diagnosed with disseminated tuberculosis, severe pneumonia (in recovery phase), severe malnutrition, rheumatic heart disease, and post-laparotomy (adhesiolysis and appendectomy).

Inclusion criteria included:

- Children aged preschool to adolescence,
- Diagnosed with respiratory disorders (pneumonia, tuberculosis),
- Exhibiting ineffective airway clearance (dyspnea, accessory muscle use, moist rales, tachypnea 42–52 breaths/minute),
- Conscious and cooperative (GCS 15), able to follow instructions,
- Parents or guardians provided informed consent.

Children with severe respiratory distress, neuromuscular disorders, or contraindications for deep breathing were excluded.

C. Nursing Interventions

Primary nursing interventions focused on airway management, including:

- **Positioning:** Semi-Fowler's position (30–45°).
- **Oxygen therapy:** 2–4 L/min via nasal cannula.
- **Collaborative therapy:** Nebulization (Combivent + Pulmicort 1:1), mucolytic (Ambroxol), and cardiac management (Ramipril, Furosemide).
- **Propeller Blowing Technique:** A play-based adaptation of pursed-lips breathing, where the child blew a paper pinwheel slowly and rhythmically. Each session involved 15 repetitions over approximately three minutes, applied whenever respiratory distress signs (RR >40/min or increased retractions) were observed.

D. Data Collection and Outcome Indicators

Data were collected through direct observation and recording of parameters before and after the intervention. A stopwatch measured respiratory rate, and a pulse oximeter measured oxygen

saturation (SpO_2). Outcome indicators were based on the Indonesian Nursing Outcome Standards.

Indicator	Pre-intervention	Post-intervention (Day 3)	Expected Outcome	Description
Effective cough	2 (moderate)	4 (improved)	Improved	Productive cough
Sputum production	3 (moderate)	4 (reduced)	Reduced	Sputum easier to expel
Dyspnea	1 (severe)	4 (improved)	Reduced	Less shortness of breath
Respiratory rate	42/min	30/min	Improved	Decreased by 12/min
Breathing pattern	2 (irregular)	4 (regular)	Improved	Less retraction

E. Data Analysis

Data were analyzed descriptively by comparing pre- and post-intervention values using patient progress notes (SOAP documentation) between Day 1 and Day 3.

RESEARCH RESULTS

A. Patient Profile

The patient presented with shortness of breath, productive cough, nausea, and vomiting. Initial assessment (October 9, 2025) findings:

- **General condition:** Apathetic, hypotonic and hypotrophic extremities.
- **Vital signs:** HR 131 bpm (irregular tachycardia), BP 87/66 mmHg (hypotension), RR 42/min (tachypnea), SpO_2 98% (with 4 L/min O_2).
- **Respiratory system:** Bilateral moderate moist rales, subcostal and intercostal retractions, nasal flaring.
- **Cardiac:** Pansystolic murmur, cardiomegaly (CTR >50%), pleural effusion on X-ray, echocardiography showing severe tricuspid and mitral regurgitation.
- **Nutrition:** Weight 20 kg, height 135 cm, BMI 10.9 (severe malnutrition), poor appetite.

B. Nursing Diagnoses and Interventions

1. **Ineffective Airway Clearance** related to airway hypersecretion.
Intervention: Propeller Blowing Technique, Semi-Fowler positioning, nebulization, and oxygen therapy.

2. **Decreased Cardiac Output** related to impaired contractility and valvular damage.
Intervention: Bed rest, vital signs monitoring, fluid balance monitoring, and collaboration for cardiac therapy.

3. **Imbalanced Nutrition: Less than Body Requirements** related to increased metabolic demand and inadequate intake.
Intervention: Dietary collaboration (nutrient-dense meals, 3x daily; milk 5x100 mL; folic acid supplementation), and weight monitoring.

C. Specific Outcomes for Airway Clearance

Parameter	Day 1	Day 3	Improvement
Respiratory rate (breaths/min)	42	30	↓ 12 breaths/min
Moist rales	Bilateral moderate	Occasional, mild	Reduced
Accessory muscle use	Subcostal, intercostal, suprasternal	Minimal subcostal only	Improved
Effective cough (1–5 scale)	2	4	Improved

By Day 3, airway clearance outcomes improved from “poor” to “moderate improvement,” indicated by normalized respiratory rate, more effective coughing, and reduced respiratory distress.

DISCUSSION
A. Effectiveness of the Propeller Blowing Technique

Pneumonia causes hypersecretion and air trapping, leading to tachypnea and increased use of accessory muscles. The propeller blowing technique, a modification of pursed-lips breathing, physiologically works by prolonging the expiratory phase. This maintains positive end-expiratory pressure (PEEP), prevents alveolar collapse, and facilitates secretion mobilization from peripheral to central airways [9].

The decrease in respiratory rate (from 42 to 30 breaths/min) and reduction in rhonchi align with prior studies indicating that pinwheel or balloon-blowing exercises significantly improve oxygenation and reduce clinical severity in children with pneumonia [6], [7]. The play-based nature of the technique enhances cooperation and engagement in pediatric patients, which is often challenging in conventional breathing exercises.

B. Management of Comorbidities

The patient’s complex condition ineffective airway clearance, decreased cardiac output, and severe malnutrition required integrated care.

- **Respiratory Cardiac Interaction:** Improved airway clearance reduced hypoxia and respiratory effort, thereby lowering cardiac workload and indirectly supporting improved cardiac output (BP improvement from 87/66 mmHg, reduced congestion).
- **Nutritional Support:** Severe malnutrition weakened respiratory muscles, prolonging recovery. Nutritional collaboration ensured adequate caloric and protein intake, supporting respiratory muscle strength and infection recovery.

Improved airway clearance reduced hypoxia and respiratory effort, thereby lowering cardiac workload and indirectly supporting improved cardiac output. Stabilization of blood pressure and reduced congestion indicate that as ventilation improves through the PEEP-like effects of the propeller technique, pulmonary vascular resistance decreases [10], [12]. This is consistent with findings that oxygenation stability is a primary predictor of heart rate normalization in pediatric pneumonia [14].

Severe malnutrition weakened respiratory muscles, particularly the diaphragm, prolonging recovery and impairing the ability to clear secretions effectively [11], [15]. In cases of co-occurring wasting and infection, high-protein nutritional support is critical to prevent respiratory failure and support the metabolic demands of breathing during the healing process [13]. Nutritional collaboration ensured adequate caloric intake, supporting muscle strength and overall infection recovery.

CONCLUSION

Comprehensive nursing care effectively resolved the main problem of ineffective airway clearance in an 11-year-old child with severe pneumonia, rheumatic heart disease, and severe malnutrition. The propeller blowing technique proved effective in facilitating secretion removal and improving respiratory patterns, evidenced by an improved clinical score, a 12-breath reduction in respiratory rate, and reduced respiratory distress. Holistic nursing management that integrates respiratory, cardiac, and nutritional care is essential to achieve optimal clinical outcomes in complex pediatric cases.

REFERENCES

1. WHO. (2022). Pneumonia in children. *Archives of Pediatrics*, 64(8), 403–410. https://doi.org/10.5005/jp/books/11599_13
2. Kemenkes RI. (2022). *Standar Prosedur Operasional Penatalaksanaan Pneumonia pada Anak*. (Not explicitly referenced in the final text but is a source for background on clinical presentation).
3. NANDA International. (2021). NANDA International. <https://Nanda.Org/>
4. Johnson, A., Marks, J., & Little, J. (2022). A pilot project: Improving the transition care process for neurosurgical adolescent patients with indwelling shunts to adult care. *Journal of Pediatric Nursing*, 60, 164–167. <https://doi.org/10.1016/j.pedn.2021.05.003>
5. Hulta, J., Brema, S., & Mary, A. J. K. (2018). Effectiveness of Breathing Exercises as a Play Way Method in Terms of Improving Clinical Parameters of Pneumonia among Children. *RGUHS Journal of Nursing Sciences*, 8(1), 18–22. https://doi.org/10.26463/rjns.8_1_17
6. Gea, N. Y. K., Nurhaeni, N., & Allenidekania. (2021). Blow pinwheels improve oxygen saturation of preschool children with post pneumonia in outpatient pediatric department. *Pediatria Medica e Chirurgica*, 43(s1), 1–5. <https://doi.org/10.4081/pmc.2021.263>
7. Putri, G. R., Andriani, L., Nisa, S., Pila, S., Pariaman, S., Diponegoro, J., & Pd, K. (2024). Penerapan Terapi Ballon Blowing Untuk Mengurangi Sesak Napas Pada Pasien Dengan Pola Napas Tidak Efektif. *Jurnal Ilmiah*, 6, 62–68.
8. Tsakona, P., Kitsatis, I., Apostolou, T., Papadopoulou, O., & Hristara-Papadopoulou, A. (2025). The Effect of Diaphragmatic Breathing as a Complementary Therapeutic Strategy in Stress of Children and Teenagers 6–18 Years Old. *Children*, 12(1), 1–21. <https://doi.org/10.3390/children12010059>
9. Padila, P., J, H., Yanti, L., Setiawati, S., & Andri, J. (2020). Meniup Super Bubbles dan Baling-Baling Bamboo pada Anak Penderita Pneumonia. *Jurnal Keperawatan Silampari*, 4(1), 112–119. <https://doi.org/10.31539/jks.v4i1.1545>
10. Mullins, K. E., et al. (2020). *Cardiopulmonary Interactions in Children with Acute Respiratory Distress Syndrome*. *Journal of Pediatric Intensive Care*, 9(2), 85–94.

11. Pratiwi, R. D., et al. (2021). *Nutritional Status as a Predictor of Airway Clearance Effectiveness in Toddlers with Pneumonia*. Jurnal Keperawatan Klinis dan Komunitas, 5(1), 12-20.
12. Hassan, A., et al. (2022). *Impact of Respiratory Interventions on Hemodynamic Stability in Pediatric Patients with Severe Lung Infection*. International Journal of Pediatrics & Adolescent Medicine, 9(3), 145-152.
13. Headey, D., et al. (2023). *The Co-occurrence of Wasting and Stunting and its Association with Childhood Pneumonia Mortality*. The American Journal of Clinical Nutrition, 117(1), 102-111.
14. Putra, A. R., & Setyowati, H. (2023). *The Relationship between Oxygen Saturation and Heart Rate in Pediatric Patients with Pneumonia*. Indonesian Journal of Nursing Health Science, 8(2), 45-53.
15. Onyishi, G. C., et al. (2024). *Malnutrition and its Impact on Respiratory Muscle Strength and Recovery in Pediatric Pneumonia: A Longitudinal Study*. Journal of Pediatric Nursing, 74, e20-e28.